The Hyvärinen scoring rule in Gaussian linear time series models

نویسندگان

چکیده

In this work we study stationary linear time-series models, and construct analyse “score-matching” estimators based on the Hyvärinen scoring rule. We consider two scenarios: a single series of increasing length, an number independent fixed length. latter case there are variants, one full data, another sufficient statistic. empirical performance these in three special cases, autoregressive (AR), moving average (MA) fractionally differenced white noise (ARFIMA) make comparisons with pairwise likelihood estimators. The results somewhat model-dependent, new doing well for MA ARFIMA but less so AR models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic generalized linear models for non-Gaussian time series forecasting

The purpose of this paper is to provide a discussion, with illustrating examples, on Bayesian forecasting for dynamic generalized linear models (DGLMs). Adopting approximate Bayesian analysis, based on conjugate forms and on Bayes linear estimation, we describe the theoretical framework and then we provide detailed examples of response distributions, including binomial, Poisson, negative binomi...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Warped-Linear Models for Time Series Classification

This article proposes and studies warped-linear models for time series classification. The proposed models are time-warp invariant analogues of linear models. Their construction is in line with time series averaging and extensions of k-means and learning vector quantization to dynamic time warping (DTW) spaces. The main theoretical result is that warped-linear models correspond to polyhedral cl...

متن کامل

Gaussian Process Time-Series Models for Structures under Operational Variability

A wide range of vibrating structures are characterized by variable structural dynamics resulting from changes in environmental and operational conditions, posing challenges in their identification and associated condition assessment. To tackle this issue, the present contribution introduces a stochastic modelingmethodology viaGaussian Process (GP) time-series models. In the presently introduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2021

ISSN: ['1873-1171', '0378-3758']

DOI: https://doi.org/10.1016/j.jspi.2020.08.004